8-1 Lesson Master

SKILLS Objectives A and B

In 1–6, a sequence is described. a. Identify the formula as recursive or explicit. b. Find the first four terms. c. Find the 10th term.

1. \[
\begin{align*}
 r_1 &= -3 \\
 r_n &= -2r_{n-1}, \text{ for all integers } n > 1
\end{align*}
\]
 a. \underline{ }
 b. \underline{ }
 c. \underline{ }

2. \[
\begin{align*}
 c_1 &= -4 \\
 c_2 &= c_{n-1} + 1, \text{ for all integers } n \geq 2
\end{align*}
\]
 a. \underline{ }
 b. \underline{ }
 c. \underline{ }

3. \[
\begin{align*}
 v_1 &= 0.7 \\
 v_n &= 3v_{n-1} - 0.3, \text{ for all integers } n \geq 2
\end{align*}
\]
 a. \underline{ }
 b. \underline{ }
 c. \underline{ }

4. \[
 t_n = -2n^3 + 24n^2 - 15n + 9
\]
 a. \underline{ }
 b. \underline{ }
 c. \underline{ }

5. \[
\begin{align*}
 k_1 &= 5 \\
 k_n &= (k_{n-1})^2, \text{ for all integers } n \geq 2
\end{align*}
\]
 a. \underline{ }
 b. \underline{ }
 c. \underline{ }

6. \[
 j_n = 11 + 5(n - 1)
\]
 a. \underline{ }
 b. \underline{ }
 c. \underline{ }

7. Write an explicit formula for the sequence defined in Question 2. \underline{ }

8. Write a recursive formula for the sequence defined in Question 6. \underline{ }

9. Write explicit and recursive formulas for the arithmetic sequence whose first eight terms are 23, 19, 15, 11, 7, 3, -1, -5, \ldots .

 \underline{ } \hspace{2cm} \underline{ }

Functions, Statistics, and Trigonometry
PROPERTIES Objective D

In 10–15, identify the sequences in Questions 1–6, respectively, as arithmetic or not arithmetic.

10. Question 1
11. Question 2
12. Question 3
13. Question 4
14. Question 5
15. Question 6

USES Objective G

16. Bert is beginning to train for the annual bicycle ride across Iowa. His plan is to ride every day, starting with 30-km rides the first week and increasing the length by 6 km each subsequent week.

a. What is the length of each of Bert's rides in the second week of his training?

b. Write a recursive formula for the length of Bert's training rides in the \(n \)th week.

c. Write an explicit formula for the length of Bert's training rides in the \(n \)th week.

d. In what week will the length of Bert's training rides be 102 km?

REPRESENTATIONS Objective J

17. Graph the first ten terms of the sequence for Bert's training rides in Question 16.

18. Graph the first ten terms of the sequence in Question 6.